
Using the Schramm–Loewner evolution to explain certain non-local observables in the 2D

critical Ising model

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2009 J. Phys. A: Math. Theor. 42 265003

(http://iopscience.iop.org/1751-8121/42/26/265003)

Download details:

IP Address: 171.66.16.154

The article was downloaded on 03/06/2010 at 07:54

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1751-8121/42/26
http://iopscience.iop.org/1751-8121
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL

J. Phys. A: Math. Theor. 42 (2009) 265003 (14pp) doi:10.1088/1751-8113/42/26/265003

Using the Schramm–Loewner evolution to explain
certain non-local observables in the 2D critical Ising
model

Michael J Kozdron

Department of Mathematics & Statistics, College West 307.31, University of Regina, Regina,
SK S4S 0A2, Canada

E-mail: kozdron@stat.math.uregina.ca

Received 28 January 2009, in final form 7 May 2009
Published 10 June 2009
Online at stacks.iop.org/JPhysA/42/265003

Abstract
We present a mathematical proof of theoretical predictions made by Arguin and
Saint-Aubin, as well as by Bauer, Bernard and Kytölä, about certain non-local
observables for the two-dimensional Ising model at criticality by combining
Smirnov’s recent proof of the fact that the scaling limit of critical Ising interfaces
can be described by chordal SLE3 with Kozdron and Lawler’s configurational
measure on mutually avoiding chordal SLE paths. As an extension of this
result, we also compute the probability that an SLEκ path (with 0 < κ � 4)
and a Brownian motion excursion do not intersect.

PACS numbers: 05.50.+q, 02.50.Ey, 11.25.Hf, 05.70.Jk, 05.10.Gg

1. Introduction

‘Though one can argue whether the scaling limits of interfaces in the Ising model
are of physical relevance, their identification opens possibility for computation of
correlation functions and other objects of interest in physics.’

S SMIRNOV (2007)

The Schramm–Loewner evolution (SLE) is a one-parameter family of random growth
processes in two dimensions introduced by Schramm [1] while considering possible scaling
limits of loop-erased random walk. In the past few years, SLE techniques have been
successfully applied to analyze a variety of two-dimensional statistical mechanics models
including percolation, the Ising model, the Q-state Potts model, uniform spanning trees, loop-
erased random walk and self-avoiding walk. Furthermore, SLE has provided a mathematically
rigorous framework for establishing various predictions made by two-dimensional conformal
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field theory (CFT), and much current research is being done to further strengthen and explain
the links between SLE and CFT; see, for example [2–5].

In 2002, Arguin and Saint-Aubin [6] examined non-local observables in the 2D critical
Ising model and using only techniques from conformal filed theory, they derived expressions
for such things as the crossing probability of Ising clusters and contours intersecting the
boundary of a cylinder. In particular, no mention of SLE was made in that work. In 2005,
also using techniques exclusive to conformal field theory, Bauer et al [7] studied multiple
Schramm–Loewner evolutions and statistical mechanics martingales. One consequence of
their investigation was the computation of arch probabilities (using their language) for the
critical Ising model.

The primary purpose of the present work is to explain how the results of Arguin and Saint-
Aubin [6] as well as Bauer et al [7] for the Ising model can be derived in a mathematically
rigorous manner by combining a recent result of Smirnov [8] with the configurational measure
on multiple SLE paths introduced by Kozdron and Lawler [9]. As an extension of this result,
we also calculate the probability that an SLEκ path (with 0 < κ � 4) and a Brownian excursion
do not intersect.

1.1. Toward a possible definition of a partition function for SLE

In the case of a statistical mechanics lattice model, there are only a finite number of possible
configurations. (Although this number is enormous, it is still finite.) Therefore, if a particular
configuration ω′ is given weight exp{−H(ω′)/T }, where T is the temperature and H is the
Hamiltonian, the probability of observing ω′ is

P{ω′} = exp{−H(ω′)/T }∑
ω exp{−H(ω)/T } = exp{−H(ω′)/T }

Z(T )
. (1)

The normalizing factor Z(T ) is called the partition function and it is well known that this
quantity encodes the statistical properties of a system in thermodynamic equilibrium.

However, in the scaling limit as the lattice spacing shrinks to 0, the ‘number’ of
configurations becomes infinite. From a physical point-of-view, when working with an
‘infinite’ system one needs an ‘infinite’ term to be factored out so that the result is finite.
The infinite factor, however, needs to be independent from the temperature, the shape of the
domain and other physically relevant quantities. Unfortunately, there is no consistent definition
of partition function in physics and so the term is often used rather loosely, especially in the
context of infinite systems.

As such, it is a challenge to mathematicians to make precise sense of what might be
reasonably called a partition function for SLE. One way is to construct an object that possesses
some of the characteristics of a partition function (in the physical sense). For instance, it might
be chosen to satisfy a certain (physically relevant) differential equation. In the present paper
we introduce an object that can, in this sense, be called a partition function for multiple SLE.
Mathematically, it is a normalizing factor that arises in the construction of a finite measure on
multiple SLE paths and satisfies the same differential equation as in Arguin and Saint-Aubin
[6], as well as in Bauer et al [7]. (As we will indicate later on, there is some arbitrariness in
the choice of normalization.)

It is worth noting that a treatment of partition functions has been recently proposed by
Dubédat [2] that links SLE with the Euclidean-free field by establishing identities between
partition functions. A recent preprint by Lawler [10] explores another partition function view
of SLE with some speculation about SLE in multiply connected domains.
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1.2. Outline

The outline of the remainder of this paper is as follows. In the following section we review the
basics of SLE, and then in section 3, we review the configurational measure. We then review
Smirnov’s theorem for a single interface in the critical Ising model in section 4 and explain
the theoretical predictions of Arguin and Saint-Aubin in section 5. In section 6, we are able to
construct the required partition function, and then show in section 7 how the results of Arguin
and Saint-Aubin [6], as well as Bauer et al [7], can be recovered. Finally, in section 8, we
extend the results of the previous sections with a theoretical result; namely, we compute the
probability that an SLEκ path (with 0 < κ � 4) and a Brownian excursion do not intersect.

2. Review of SLE

It is assumed that the reader is familiar with the basics of SLE as described in any one of the
general works for physicists such as [11–14] or mathematicians such as [15, 16]. The purpose
of this section is therefore to set notation we will use throughout and to review those properties
of SLE germane for the present work. Let C denote the set of complex numbers and write
H = {z ∈ C : �(z) > 0} to denote the upper half plane. The chordal Schramm–Loewner
evolution with parameter κ > 0 with the standard parametrization (or simply SLEκ ) is the
random collection of conformal maps {gt , t � 0} of the upper half plane H obtained by solving
the initial value problem

∂

∂t
gt (z) = 2

gt (z) − √
κWt

, g0(z) = z, (2)

where z ∈ H and Wt is a standard one-dimensional Brownian motion with W0 = 0. It is a hard
theorem to prove that there exists a curve γ : [0,∞) → H with γ (0) = 0 which generates
the maps {gt , t � 0}. More precisely, for z ∈ H, let Tz denote the first time of explosion of
the chordal Loewner equation (2), and define the hull Kt by Kt = {z ∈ H : Tz < t}. The hulls
{Kt, t � 0} are an increasing family of compact sets in H and gt is a conformal transformation
of H\Kt onto H. For all κ > 0, there is a continuous curve {γ (t), t � 0} with γ : [0,∞) → H

and γ (0) = 0 such that H\Kt is the unbounded connected component of H\γ (0, t] a.s. The
behavior of the curve γ depends on the parameter κ . If 0 < κ � 4, then γ is a simple curve
with γ (0,∞) ⊂ H and Kt = γ (0, t]. If 4 < κ < 8, then γ is a non-self-crossing curve
with self-intersections and γ (0,∞) ∩ R 
= ∅. Finally, if κ � 8, then for this regime γ is
a space-filling, non-self-crossing curve. Let μ#

H(0,∞) denote the chordal SLEκ probability
measure on paths in H from 0 to ∞. Following Schramm’s original definition [1], if D ⊂ C

is a simply connected domain and z,w are distinct points in ∂D, then μ#
D(z,w), the chordal

SLEκ probability measure on paths in D from z to w, is defined as the image of μ#
H(0,∞)

under a conformal transformation f : H → D with f (0) = z and f (∞) = w.

Remark. We are considering SLEκ as a measure on unparametrized curves. This means that
it is sufficient to define SLEκ in D from z to w to be the conformal image of SLEκ in H from 0
to ∞ under any conformal transformation with 0 �→ z and ∞ �→ w. Of course, if F : D → H

is a conformal transformation with F(z) = 0 and F(w) = ∞, then F is not unique. However,
any other such transformation F̂ must be of the form F̂ = rF for some r > 0. It is not too
difficult to show that the definition of SLEκ in D from z to w is then independent of the choice
of transformation; see p 149 of [15].

As previously mentioned, a number of authors have been working to understand more
fully the relationship between CFT and SLE. One form of this relationship comes in the
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interpretation of certain conformal field theory quantities in terms of κ , the variance parameter
for the underlying Brownian motion driving process. In particular, if we let

b = 6 − κ

2κ
and c = (κ − 6)(8 − 3κ)

2κ
= 1 − 3(κ − 4)2

2κ
, (3)

then b is the boundary scaling exponent or boundary conformal weight (also denoted h1,2 in
the CFT literature) and c is the central charge.

3. Review of the configurational measure

Early in the development of SLE, it was realized that interfaces of statistical mechanics models
could be described in the scaling limit by a single chordal SLE path. Naturally, this led to the
question of multiple interfaces and was the primary motivation for Bauer et al [7] to examine
multiple SLE. More mathematical approaches were considered by Dubédat [17] who took a
local, or infinitesimal, approach to the study of multiple SLE whereas Kozdron and Lawler
[9] viewed multiple SLE from a global, or configurational, point-of-view. The configurational
approach, which we now recall, is to view chordal SLEκ as not just a probability measure on
paths connecting two specified points on the boundary, but rather as a finite measure on paths
that when normalized gives chordal SLEκ as defined by Schramm. This approach [9] works
in the case of simple paths, and so we restrict our consideration to SLEκ for 0 < κ � 4. For
simplicity, the results are phrased in terms of the parameter b (the boundary scaling exponent)
which is related to κ as in (3) by

b = 6 − κ

2κ
or κ = 6

2b + 1
.

Let μ#
D,b,1(z, w) denote the conformally invariant probability measure on chordal SLEκ paths

from z to w in D as defined in section 2. (Note that we wrote μ#
D,b,1(z, w) as μ#

D(z,w) in that
section. We now want to emphasize the explicit dependence on b and the fact that this is the
measure on one path.) Define a kernel for the upper half plane H by setting

HH,b,1(0,∞) = 1 and HH,b,1(x, y) = |y − x|−2b (4)

for x, y ∈ R = ∂H. If D is a simply connected domain with Jordan boundary and z,w are
distinct boundary points at which ∂D is analytic, we now let HD,b,1(z, w) be determined by

HD,b,1(z, w) = |f ′(z)|b|f ′(w)|bHf (D),b,1(f (z), f (w)) (5)

where f : D → f (D) is a conformal transformation. Finally, define the SLEκ measure on
paths in D from z to w by setting

QD,b,1(z, w) = HD,b,1(z, w)μ#
D,b,1(z, w).

Note that this measure satisfies the conformal covariance rule

f ◦ QD,b,1(z, w) = |f ′(z)|b|f ′(w)|bQf (D),b,1(f (z), f (w))

which follows immediately from the conformal invariance of μ#
D,b,1(z, w) and the scaling

rule (5) for HD,b,1(x, y).

Remark. It is worth stressing that there is some arbitrariness possible in the definition of
HD,b,1(z, w). Motivated by conformal field theory, we want to define an object which satisfies
the conformal covariance rule (5). Suppose that D is a simply connected proper subset of C

and ∂D is locally analytic at z and w. Suppose further that D′ is also a simply connected proper
subset of C that is locally analytic at z′, w′ ∈ ∂D′. It then follows that there exists a unique
conformal transformation f : D → D′ with f (z) = z′, f (w) = w′ and |f ′(w)| = 1. We call
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this the canonical transformation of (D, z,w) onto (D′, z′, w′). In order to handle the case that
w = ∞, we need to interpret things appropriately. We say that ∂D is locally analytic at w = ∞
if ∂h(D) is locally analytic at 0 where h(ζ ) = 1/ζ . We interpret |f ′(w)| = 1 if w = ∞ (and
w′ 
= ∞) to mean that |f (ζ ) − w| ∼ |ζ |−1 as ζ → ∞. Since a conformal transformation
of the upper half plane H onto itself with ∞ �→ ∞ takes the form f (z) = a1z + a2 with
a1, a2 ∈ R and a1 > 0, in order to have HH,b,1(x, y) = |f ′(x)|b|f ′(y)|bHH,b,1(f (x), f (y))

for x, y ∈ R it must be the case that HH,b,1(x, y) = C|y − x|−2b where C > 0 is a constant.
If we now use the canonical transformation from (H, 0,∞) onto (H, 0, 1) which is given by
f (z) = z/(1 + z), then it follows that HH,b,1(0,∞) = |f ′(0)|b|f ′(∞)|bHH,b,1(0, 1) = C. We
then, arbitrarily, choose C = 1 so that HH,b,1(0,∞) = 1 and QH,b,1(0,∞) = μ#

H,b,1(0,∞)

is the SLE probability measure on paths as originally defined by Schramm. This accounts for
the declaration made in (4).

We will now define the measures QD,b,n for positive integers n. As above, suppose that D
is a simply connected domain with Jordan boundary and suppose that z1, . . . , zn, wn, . . . , w1

are 2n distinct points ordered counterclockwise on ∂D. Write z = (z1, . . . , zn),

w = (w1, . . . , wn), and assume that ∂D is locally analytic at z and w. Our goal is to
define a measure on mutually avoiding n-tuples of simple paths γ = (γ 1, . . . , γ n) in D.
More accurately, γ j is an equivalence class of curves such that there is a representation
γ j : [0, 1] → C which is simple and has γ j (0) = zj , γ

j (1) = wj . Then QD,b,n(z, w), the
n-path SLEκ measure in D, is defined to be the measure that is absolutely continuous with
respect to the product measure

QD,b,1(z1, w1) × · · · × QD,b,1(zn, wn)

with Radon–Nikodym derivative Y (γ) = YD,b,z,w(γ 1, . . . , γ n) given by

Y (γ) = 1{γ k ∩ γ l = ∅, 1 � k < l � n} exp

{
−λ

n−1∑
k=1

m(D; γ k, γ k+1)

}

where

λ = (6 − κ)(8 − 3κ)

4κ
= − c

2
(6)

and m(D;V1, V2) denotes the Brownian loop measure of loops in D that intersect both V1 and
V2. For further details about the Brownian loop measure, consult [18]. Finally, we define
HD,b,n(z, w) = |QD,b,n(z, w)| to be the mass of the measure QD,b,n(z, w), and note that it
satisfies the conformal covariance property

HD,b,n(z, w) = |f ′(z)|b|f ′(w)|bHf (D),b,n(f (z), f (w)),

where we have written f (z) = (f (z1), . . . , f (zn)) and f ′(z) = f ′(z1) · · · f ′(zn). We end
this section by summarizing the properties of the configurational measure. For proofs of the
separate parts, see propositions 3.1–3.3 in [9].

Theorem 3.1 (Properties of the configurational measure). Suppose that 0 < κ � 4. Let D
be a simply connected domain with Jordan boundary, and let z1, . . . , zn, wn, . . . , w1 be 2n

distinct points ordered counterclockwise on ∂D. Write z = (z1, . . . , zn), w = (w1, . . . , wn),
and assume that ∂D is locally analytic at z and w.

(a) Existence: for any b � 1
4 , the family of configurational measures QD,b,n(z, w) as defined

above is supported on n-tuples of mutually avoiding simple curves where each simple
curve γ i, i = 1, . . . , n, is chordal SLEκ from zi to wi with κ = 6/(2b + 1).
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(b) Conformal covariance: if f : D → f (D) is a conformal transformation, then

QD,b,n(z, w) = |f ′(z)|b|f ′(w)|bQf (D),b,n(f (z), f (w))

where f (z) = (f (z1), . . . , f (zn)) and f ′(z) = f ′(z1) · · · f ′(zn).
(c) Boundary perturbation: suppose D ⊂ D′ � C are simply connected domains. Then

QD,b,n(z, w) is absolutely continuous with respect to QD′,b,n(z, w) with Radon–Nikodym
derivative equal to

YD,D′,b,n(z, w)(γ) = 1{γ j ⊂ D, j = 1, . . . , n} exp{−λm(D′; γ 1 ∪ · · · ∪ γ n,D′\D)},
where m is the Brownian loop measure and λ is given by (6). In particular, the
Radon–Nikodym derivative is a conformal invariant.

(d) Cascade relation: for 1 � j � n, if

z = (z1, . . . , zn), w = (w1, . . . , wn), γ̂ = (γ 1, . . . , γ j−1, γ j+1, . . . , γ n),

ẑ = (z1, . . . , zj−1, zj+1, . . . , zn), ŵ = (w1, . . . , wj−1, wj+1, . . . , wn),

then the marginal measure on γ̂ in QD,b,n(z, w) is absolutely continuous with respect
to QD,b,n−1(ẑ, ŵ) with Radon–Nikodym derivative equal to HD̂,b,1(zj , wj ). Here D̂ is
the subdomain of D\γ̂ whose boundary includes zj , wj . Moreover, the conditional
distribution of γ j given γ̂ is that of SLEκ from zj to wj in D̂.

It is important to note that the construction just given is for a finite measure on n-tuples of
mutually avoiding chordal SLEκ curves. The corresponding probability measure is therefore
given by

μ#
D,b,n(z, w) = QD,b,n(z, w)

HD,b,n(z, w)
.

4. Smirnov’s theorem for a single interface

Recent work by Smirnov [8] has established that the scaling limit of the interface in the 2D
Ising model at the critical temperature is SLE3.

To be precise, suppose that D � C is a simply connected Jordan domain with distinct
points z and w marked on the boundary. For every N = 1, 2, 3, . . ., let (DN, zN,wN) denote a
simply connected, square lattice approximation to (D, z,w), and assume that {(DN, zN,wN)}
converges in the Carathéodory sense as N → ∞; see [19] for one way to construct such a
sequence of discrete approximations to (D, z,w). Since the boundary of D is a Jordan curve,
the points w and z divide ∂D into two arcs—the counterclockwise arc from w to z written
as ∂+ and the counterclockwise arc from z to w written as ∂−. Let the corresponding subsets
of ∂DN be denoted s ∂+

N and ∂−
N . Now consider the Ising model at criticality on the lattice

(DN, zN,wN) with boundary conditions of spin +1 at all points of ∂+
N and spin −1 at all points

of ∂−
N . (Without loss of generality, assume that both zN and wN are +1.) The result of Smirnov

is that the discrete interface joining zN to wN and separating +1 spins and −1 spins converges
as N → ∞ to a simple path whose law is given by the probability measure on chordal SLE3

paths in D from z to w.

Remark. Technically, Smirnov considers the Fortuin–Kastelyn random cluster representation
of the Ising model on the square lattice. Introducing Dobrushin boundary conditions, namely
wired on ∂+

N and dual-wired on ∂−
N , forces there to be a unique interface (on the medial lattice

between the original lattice DN and its dual-lattice) from zN to wN separating +1 spins and
−1 spins; for details of the precise setup and statement, see [8].

6
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w1
w2

z1
z2

w1
w2

z1
z2

Figure 1. Configuration of type I (left) and type II (right).

5. Arguin and Saint–Aubin’s theoretical predictions for two interfaces

It also follows1 from Smirnov’s work that if w1, w2, z2, z1 are four distinct marked boundary
points labeled counterclockwise around ∂D, then the two interfaces of the Ising model at
criticality with boundary changing operators at w1,N , w2,N , z2,N and z1,N converge as N → ∞
to a pair of mutually avoiding simple paths whose law is that of a probability measure on pairs
of mutually avoiding chordal SLE3 paths. (This is explained more precisely in a remark in
section 6.) There is, of course, the question of whether the multiple SLE3 paths connect w1

to w2 and z1 to z2 or z1 to w1 and z2 to w2. Thus, using the language of Bauer et al [7], there
are two distinct arch types that may result. We prefer to use the phrase type of configuration
instead, and say that the resulting multiple interface configuration is of either type I if it joins
w1 to w2 and z1 to z2, or of type II if it joins z1 to w1 and z2 to w2; see figure 1.

In the language of conformal field theory, an interface is a non-local observable, and
Arguin and Saint-Aubin [6] used CFT techniques to give a prediction for the probability of
a configuration of type II. They described the asymptotic behavior of this probability using
non-unitary representations that followed from the boundary scaling exponent h1,2 of the Kac
table.

Arguin and Saint-Aubin considered the Ising model at criticality on a half-infinite cylinder
of radius 1. They represented the half-infinite cylinder by the unit disk D and denoted by
θj , j = 1, . . . , 4, the four points along the boundary where the spin flips occurred.

They then conformally mapped the unit disk to the upper half plane and argued that the
four point correlation function of the field φ = φ2,1 of conformal weight 1

2 is

〈φ(z1), φ(w1), φ(z2), φ(w2)〉 = 1

(z1 − w1)(z2 − w2)
g

(
(z1 − w1)(z2 − w2)

(z1 − z2)(w1 − w2)

)
,

where g is a solution to the differential equation

3z(z − 1)2g′′(z) + 2(z − 1)(z + 1)g′(z) − 2zg(z) = 0. (7)

This second-order differential equation has two solutions—the first with exponent 0 and the
second with exponent 5

3 . Arguin and Saint-Aubin argued that the solution with exponent 5
3

corresponded to the probability of a configuration of type II, and then found

P{config of type II} = 1

2
− 9

20



(

1
3

)



(
2
3

)2
f (0)(ξ)

(
f (5/3)(ξ) − ξ

1 − ξ
f (5/3)(1 − ξ)

)
(8)

with

f (0)(ξ) = 1 − ξ +
ξ

1 − ξ
and f (5/3)(ξ) = ξ 5/3

1 − ξ
F

(− 1
3 , 4

3 , 8
3 , ξ

)
,

1 No mathematical proof with all the details has been written down as of yet, although initial analysis suggests that
it follows directly.
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where F = 2F1 denotes the hypergeometric function and

ξ = (z1 − w1)(z2 − w2)

(z1 − z2)(w1 − w2)

denotes the cross-ratio. Furthermore, as ξ → 0, it follows that

P{config of type II} ∼ 1 − 10

9



(

2
3

)2



(

1
3

) ξ 5/3 + O(ξ 2).

In section 7, we explain how to recover the result (8) rigorously using SLE.

6. Definition of a partition function for two paths and a crossing probability calculation

Recall from section 3 that HD,b,n(z, w) is defined to be the mass of the configurational measure
QD,b,n(z, w) and that HD,b,n satisfies the scaling rule

HD,b,n(z, w) = |f ′(z)|b|f ′(w)|bHf (D),b,n(f (z), f (w)).

If we now define

H̃D,b,n(z, w) = HD,b,n(z, w)

HD,b,1(z1, w1) · · · HD,b,1(zn, wn)
, (9)

then H̃D,b,n(z, w) is a conformal invariant. Thus, by conformal invariance, it suffices to work
in D = H.

In the case of two paths, an explicit calculation is possible and is given by the following
proposition which has appeared in a number of places. It was first stated in a rigorous
mathematical context by Dubédat [17] using an infinitesimal approach, and was derived using
CFT by Bauer et al [7]. A detailed derivation first appeared in [9]. As we will see shortly, the
special case of the Ising model actually appeared earlier in Arguin and Saint-Aubin [6].

Proposition 6.1. Consider the upper half plane H and let 0 < x < y < ∞. If b � 1
4 , then

H̃H,b,2((0, x), (∞, y)) = 
(2a)
(6a − 1)


(4a)
(4a − 1)
(x/y)aF (2a, 1 − 2a, 4a; x/y), (10)

where F = 2F1 denotes the hypergeometric function and a = 2/κ = (2b + 1)/3.

The proof of this proposition in [9] is accomplished by finding and then solving
a differential equation satisfied by H̃H,b,2((0, x), (∞, y)). By scaling, we can write
H̃H,b,2((0, x), (∞, y)) = ψ(x/y) for some function ψ = ψH,b of one variable. We then
show that the ODE satisfied by ψ is

u2(1 − u)2ψ ′′(u) + 2u(a − u + (1 − a)u2)ψ ′(u) − a(3a − 1)(1 − u)2ψ(u) = 0,

where a = 2/κ . In the particular case that κ = 3 so that a = 2
3 , this differential equation

reduces to

3u2(1 − u)ψ ′′(u) + 2u(2 − u)ψ ′(u) − 2(1 − u)ψ(u) = 0.

If we change variables by setting g(z) = ψ(1 − z), then g satisfies

3z(z − 1)2g′′(z) + 2(z − 1)(z + 1)g′(z) − 2zg(z) = 0

which is exactly (7) above.

Remark. It is important to note that the restriction to b � 1
4 is needed to guarantee that

0 < κ � 4. Formally, if we plug in κ = 6, then we recover Cardy’s formula for percolation;

8
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however, constructing a configurational measure on non-crossing SLE paths in the non-simple
regime (4 < κ < 8) is still an open problem.

We now explain how proposition 6.1 can be used to calculate a crossing probability for
two SLEκ paths (0 < κ � 4). Choosing κ = 3 as a special case yields the desired result of
Arguin and Saint-Aubin [6], and of Bauer et al [7], for the critical Ising model. By conformal
invariance, it is enough to work in the upper half plane H with boundary points 0, 1,∞ and
x where 0 < x < 1 is a real number. The possible interface configurations are therefore
of two types, namely (I) a simple curve connecting 0 to ∞ and a simple curve connecting
x to 1, or (II) a simple curve connecting 0 to x and a simple curve connecting 1 to ∞. The
configurational measure corresponding to type I is

QH,b,2((0, x), (∞, 1))

and the configurational measure corresponding to type II is

QH,b,2((x, 1), (0,∞)).

By the symmetry of chordal SLE about the imaginary axis, however,

QH,b,2((x, 1), (0,∞)) = QH,b,2((0, 1 − x), (∞, 1)).

The partition function corresponding to a configuration of type I is (defined as)

Zb,I (x) := HH,b,2((0, x), (∞, 1))

and the partition function corresponding to a configuration of type II is (defined as)

Zb,II (x) := HH,b,2((0, 1 − x), (∞, 1)) = Zb,I (1 − x).

Therefore, the probabilities of a configuration of type I and of a configuration of type II are
given by

Zb,I (x)

Zb,I (x) + Zb,II (x)
and

Zb,II (x)

Zb,I (x) + Zb,II (x)
= Zb,I (1 − x)

Zb,I (x) + Zb,II (x)
, (11)

respectively.

Remark. As indicated in section 3, we chose to normalize our kernel in such a way
that HH,b,1(0,∞) = 1. Thus, there is no arbitrary constant in our definition of either
Zb,I (x) or Zb,II (x). Suppose, however, that we had normalized our kernel differently, say
HH,b,1(0,∞) = C for some C > 0. Although both Zb,I (x) and Zb,II (x) would now depend
on C, the ratios in (11) would not.

Remark. To be precise, the construction in section 3 only defines the configurational measure
for a given type of configuration. If we want to consider configurations without regard to
type, then we need to define a measure supported on mutually avoiding pairs of curves of
either type. Of course, such a measure is given by the sum of the configurational measures of
types I and II, respectively. The mass of this measure is Zb,I (x) + Zb,II (x), and so the
probability measure on mutually-avoiding pairs of curves of either type is

P = QH,b,2((0, x), (∞, 1)) + QH,b,2((x, 1), (0,∞))

Zb,I (x) + Zb,II (x)
.

Thus, if A is the event A = {config of type I}, then

P(A) = QH,b,2((0, x), (∞, 1))(A) + QH,b,2((x, 1), (0,∞))(A)

Zb,I (x) + Zb,II (x)

= Zb,I (x) + 0

Zb,I (x) + Zb,II (x)

9
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and, similarly, for P(Ac) = P{config of type II} as in (11). We can now give a more careful
statement of the consequence of Smirnov’s work mentioned at the beginning of section 5,
namely that if PN denotes the probability measure for the two interfaces on the 1/N-scale
lattice, then PN converges weakly to P.

Now by (4) and (9), we know that

HH,b,2((0, x), (∞, 1)) = HH,b,1(0,∞) · HH,b,1(x, 1) · H̃H,b,2((0, x), (∞, 1))

= (1 − x)−2bH̃H,b,2((0, x), (∞, 1))

so that proposition 6.1 yields

Zb,I (x) = HH,b,2((0, x), (∞, 1)) = 
(2a)
(6a − 1)


(4a)
(4a − 1)
xa(1 − x)−2bF (2a, 1 − 2a, 4a; x).

Using (15.3.3) of [20], we can write

F(2a, 1 − 2a, 4a; x) = (1 − x)4a−1F(2a, 6a − 1, 4a; x). (12)

If we also note that a = 2/κ so that (3) implies 2b = (6 − κ)/κ = 3a − 1, then we can write

Zb,I (x) = 
(2a)
(6a − 1)


(4a)
(4a − 1)
xa(1 − x)aF (2a, 6a − 1, 4a; x)

and

Zb,II (x) = 
(2a)
(6a − 1)


(4a)
(4a − 1)
xa(1 − x)aF (2a, 6a − 1, 4a; 1 − x).

Hence, we conclude from (11) that

P{config of type I} = F(2a, 6a − 1, 4a; x)

F (2a, 6a − 1, 4a; x) + F(2a, 6a − 1, 4a; 1 − x)
(13)

and

P{config of type II} = F(2a, 6a − 1, 4a; 1 − x)

F (2a, 6a − 1, 4a; x) + F(2a, 6a − 1, 4a; 1 − x)
. (14)

7. Summary of results for the 2D critical Ising model

In the particular case of the 2d critical Ising model (in which case κ = 3), then (14) yields the
probability of a configuration of type II as follows:

P1(x) = F
(

4
3 , 3, 8

3 ; 1 − x
)

F
(

4
3 , 3, 8

3 ; x
)

+ F
(

4
3 , 3, 8

3 ; 1 − x
) .

Using (15.3.3) of [20] (as in (12) above) Arguin and Saint-Aubin [6] expressed the same
probability (8) as

P2(x) = 1

2
− 9

20



(

1
3

)



(
2
3

)2

[
x5/3(1 − x)5/3

1 − x + x2

] [
F

(
4
3 , 3, 8

3 ; x
) − F

(
4
3 , 3, 8

3 ; 1 − x
)]

whereas it is given in Bauer et al [7] as

P3(x) =
(∫ 1

0

y2/3(1 − y)2/3

(1 − y + y2)2
dy

)−1 ∫ 1

x

y2/3(1 − y)2/3

(1 − y + y2)2
dy.

It is not at all obvious that these three expressions are identical. However, since all three
represent the same physical observable (and since each was obtained by solving the same

10
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Graph of P(x) = P{config of type II}

0

0.2

0.4

0.6

0.8

1

 P(x)

0.2 0.4 0.6 0.8 1
x

Figure 2. Graph of P(x) = P1(x) = P2(x) = P3(x) for 0 � x � 1.

differential equation), it must be the case that P1(x) = P2(x) = P3(x) for 0 � x � 1; see
figure 2.

The easiest way to verify their equivalence is simply to check directly that each satisfies the
required differential equation with the given boundary conditions. It is also possible to verify
algebraically that these three expressions are the same by converting all of the hypergeometric
functions into associated Legendre functions of the first kind.

Remark. The calculation of P1(x) follows from SLE-techniques in a mathematically rigorous
way, and it provides an explanation for the results of Arguin and Saint-Aubin as well as Bauer
et al. The key point is that the result of Smirnov tells us precisely what is meant by a scaling
limit of the Ising model, namely the interface separating +1 spins from −1 spins viewed as a
probability measure on curves converges weakly to the law of choral SLE3. Thus, by choosing
κ = 3 we should be able to use SLE to recover results from CFT for the Ising model such as
the one that Arguin and Saint-Aubin derived.

8. Intersection probabilities for SLEκ, 0 < κ � 4, and a Brownian excursion

The techniques that were used in [9] to derive proposition 6.1 leads to a calculation of the
probability that an SLE2 path and a Brownian excursion do not intersect. This was the key in
establishing the scaling limit of Fomin’s identity for loop-erased random walk [21]. In this
section, we extend those ideas to compute the probability that an SLEκ path and a Brownian
excursion do not intersect. This event is illustrated in figure 3.

Theorem 8.1. Suppose that 0 < x < y < ∞ are real numbers and let β : [0, tβ ] → H be a
Brownian excursion from x to y in H. If γ : [0,∞) → H is a chordal SLEκ from 0 to ∞ in
H, then

P{γ [0,∞) ∩ β[0, tβ ] = ∅} = 
(2a)
(4a + 1)


(2a + 2)
(4a − 1)
(x/y)F (2, 1 − 2a, 2a + 2; x/y) (15)

where F = 2F1 is the hypergeometric function and a = 2/κ .

Since the proof of this theorem is similar to the proof of theorem 6.1 in [21], we omit
many details.

11
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0 x y

∞

γ[0, ∞), a chordal SLEκ β[0, tβ ], a Brownian excursion

Figure 3. Schematic representation of P{γ [0,∞) ∩ β[0, tβ ] = ∅}.

Proof. Let �(x, y) = P{γ [0,∞) ∩ β[0, tβ ] = ∅}. Using Itô’s formula, it can be shown that
� satisfies the differential equation

− a

(
1

x
− 1

y

)2

� +
a

x

∂�

∂x
+

a

y

∂�

∂y
+

1

2

∂2�

∂x2
+

1

2

∂2�

∂y2
+

∂2�

∂x∂y
= 0. (16)

SLE scaling implies that the probability in question only depends on the ratio x/y, and so
�(x, y) = ϕ(x/y) for some function ϕ = ϕH,b of one variable. Thus, we find

∂�

∂x
= y−1ϕ′(x/y),

∂�

∂y
= −xy−2ϕ′(x/y),

∂2�

∂x2
= y−2ϕ′′(x/y),

∂2�

∂y2
= 2xy−3ϕ′(x/y) + x2y−4ϕ′′(x/y),

∂2�

∂x∂y
= −y−2ϕ′(x/y) − xy−3ϕ′′(x/y),

so that after substituting into (16), multiplying by y2, letting u = x/y and combining terms,
we have

u2(1 − u)ϕ′′(u) + 2u(a + (a − 1)u)ϕ′(u) − 2a(1 − u)ϕ(u) = 0 (17)

using the constraint 0 < u < 1. The second-order ordinary differential equation (17) has
regular singular points at 0, 1 and ∞, and so we know that it is possible to transform it into a
hypergeometric differential equation. By writing (17) as

ϕ′′(u) +

[
2a

u
+

2 − 4a

u − 1

]
ϕ′(u) +

[
2a

u
− 2a

]
ϕ(u)

u(u − 1)
= 0 (18)

we see that we have a case of Riemann’s differential equation whose complete set of solutions
(see (15.6.1) and (15.6.3) of [20]) can be denoted by Riemann’s P-function

ϕ(u) = P

⎧⎨
⎩

0 ∞ 1
1 −2a 4a − 1 u

−2a 1 0

⎫⎬
⎭ .

By now considering (15.6.11) of [20], the transformation formula for Riemann’s P-function for
reduction to the hypergeometric function, we see that the appropriate change-of-variables to
apply is ψ(u) = u−1(1−u)1−4aϕ(u) noting that this is permitted by the constraint 0 < u < 1.
Thus, (17) implies

u(1 − u)ψ ′′(u) + (2a + 2 − (6a + 2)u)ψ ′(u) − 2a(4a + 1)ψ(u) = 0. (19)

We see that (19) is now a well-known hypergeometric differential equation [20] whose general
solution is given by

ψ(u) = C1F(2a, 4a + 1, 2a + 2; u) + C2u
−1−2aF (−1, 2a,−2a; u)

12
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and so

ϕ(u) = u(1 − u)4a−1[C1F(2a, 4a + 1, 2a + 2; u) + C2u
−1−2aF (−1, 2a,−2a; u)].

Using equation (15.3.3) of [20] we find

F(2a, 4a + 1, 2a + 2; u) = (1 − u)1−4aF (2, 1 − 2a, 2a + 2; u)

which implies that

ϕ(u) = C1uF(2, 1 − 2a, 2a + 2; u) + C2u
−2a(u − 1)4a−1F(−1, 2a,−2a; u).

However, it follows immediately from the continuity of the Brownian excursion measure [19]
and the fact that γ (0,∞) ∩ R = ∅ when 0 < κ � 4 that ϕ(u) → 0 as u → 0+ and ϕ(u) → 1
as u → 1−. This implies C2 = 0 and

C−1
1 = F(2, 1 − 2a, 2a + 2; 1) = lim

u→1−
F(2, 1 − 2a, 2a + 2; u) = 
(2a + 2)
(4a − 1)


(2a)
(4a + 1)
.

Thus,

ϕ(u) = 
(2a)
(4a + 1)


(2a + 2)
(4a − 1)
uF (2, 1 − 2a, 2a + 2; u)

and so (15) follows as required. �

Remark. Theorem 8.1 provides another example of an SLE observable. Hence, the primary
application of theorem 8.1 to a physical situation seems to be as a way to provide evidence that
a particular statistical mechanics lattice model interface has an SLE limit. A conjectured value
of κ may be found, or verified, by approximating the probability that a Brownian excursion
and an interface intersect, and then comparing the result to that given in this theorem. In order
to actually do this numerically, however, there are a number of issues with which one must
contend. These include selecting a lattice with which to work, defining and then simulating an
appropriate interface, and then simulating a simple random walk excursion on the lattice (since
simple random walk excursions converge to Brownian excursions; see [19], for instance).

As an example where the observable from this theorem might be applied, consider the
recent work of Bernard et al [22]. They perform several statistical tests of the hypothesis that
zero-temperature Ising spin glass domain walls are described by an SLEκ , and working
on the triangular lattice they find numerically these domain walls to be consistent with
κ = 2.32 ± 0.08. Among the observables studied in [22] that led to this conclusion is the
SLE left-passage probability (which, incidentally, is also given in terms of a hypergeometric
function). The work of Bernard et al extends earlier work of Amoruso et al [23] who presented
numerical evidence that the techniques of CFT might be applicable to two-dimensional Ising
spin glasses, and that such domain walls might be described by a suitable SLE. In particular,
the observable studied in [23] was the fractal dimension of the domain walls.

The transition probabilities for simple random walk excursions on the triangular lattice
can be computed. This means that such random walks can be simulated, and so it seems
possible that the numerical techniques used in either [22] or [23] could actually be applied for
the observable of theorem 8.1.

9. Conclusion

The construction of the configurational measure on n-tuples of mutually avoiding, simple SLE
paths by Kozdron and Lawler [9] leads to a possible definition of a partition function for SLE.
Using this definition, a mathematically rigorous proof can be given for certain theoretical
predictions about the 2D critical Ising model that Arguin and Saint-Aubin [6] originally
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derived using only CFT techniques (i.e., no SLE mentioned in their work). As well, this
gives a mathematically rigorous derivation of the general results of Bauer et al [7] concerning
crossing probabilities for two interfaces in the simple (0 < κ � 4) regime that they derived
previously using CFT techniques. It also leads to the calculation of the probability that an
SLEκ path (with 0 < κ � 4) and a Brownian excursion do not intersect.
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[2] Dubédat J 2007 SLE and the free field: partition functions and couplings arXiv:0712.3018
[3] Duplantier B and Sheffield S 2008 Liouville quantum gravity and KPZ arXiv:0808.1560
[4] Friedrich R and Werner W 2003 Commun. Math. Phys. 243 105–22
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